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ABSTRACT 

A model for estimating the undrained shear strength is developed for a mangrove swamp near-shore site in 

Niger Delta Nigeria. The site is underlain by an upper layer of sensitive soil mixed with organic matter 

followed by alternating layers of clay and sand. The development of the model is based on the random field 

theory using cone penetration test (CPT) data from the geotechnical site investigation report. Data from 16 

CPTs, arranged in a 4x4 grid and spaced at 50m between test holes, were selected for the study with 

intermediate CPT data simulated between adjacent test holes using a pseudo-averaging technique to reduce 

the spacing to 12.5m. Data simulation is justified since the soil profile displayed uniform and continuous 

soil grouping and sequencing over the entire length and breadth of the field. A 2-dimensional spatial 

variability model for predicting the value of undrained shear strength at any depth across the entire field is 

formulated, using the statistical quantities estimated for the soil layers. The model estimates the undrained 

shear strength within a margin of error ±15%. 
 

Keywords - Cone Penetration Test, Random field theory, spatial variability, undrained shear strength.   

INTRODUCTION 

  Spatial variability in soil property has always been recognized in geotechnical engineering practice and 

for a comprehensive understanding of the subject, it is possible to carry out a detailed characterization of 

the spatial variation in any direction with sufficiently high number of measurements which will be 

considered unnecessary given the large number of samples and time required for such exercise. The 

hypothesis of randomness is usually adopted in practice to bridge the gap in knowledge with most recent 

research efforts resorting to statistical and probabilistic methods in characterizing spatial variability [1]. 

These methods have evolved from simple statistical description of the soil property to the more intricate 

random field theory.  The inadequacy of simple statistical description was highlighted by [2] with reference 

to the second-moment statistics of mean and standard deviation which alone are incapable of describing the 

spatial variation of soil properties, since two sets of measurements with similar second-moment statistics 

and statistical distribution may exhibit differences in spatial distribution.  

  It is now generally accepted that the statistical description of the soil property in terms of the mean, 

variance, and scale of fluctuation, 𝜃, is adequate to fully characterize the spatial variability of a soil property. 

In practice, the spatial variability of the soil property is estimated from samples obtained from a population 

and the analysis usually performed using either: (a) random field theory – a variation of time series analysis 

[3] and [4]; or (b) geostatistics [5]. A key requirement in using both analytical methods is that of data 

stationarity which assumes the invariance of the statistics of a data set to spatial location [2]. In a more 

recent study, [6] proposed a method of site variability characterization that applied knowledge of spatial 

statistics to quantify site variability indices using Cone Penetration Test (CPT) data.  

In this paper, a 2-dimensional variability model for predicting the value of undrained shear strength at 

any depth across the entire field is developed by combining the classical random field theory and the method 

for evaluating horizontal spatial variability as proposed by [6].     
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RANDOM FIELD THEORY 

Spatial Variability 

  The random field model of spatial variability assumes spatial dependence such that the soil properties 

X(x1) and X(x2) exhibit some form of dependence that decreases with separation distance. The 

interdependence of the properties at points in the field is characterized using joint bivariate distribution 

𝑓𝑥1,𝑥2
(𝑥1,𝑥2). However, for three or more points, the complete probabilistic description of the random 

process becomes complex and difficult to use in practice. The characterization problem is, nevertheless, 

simplified by assuming a Gaussian process and stationarity of data which allows the complete joint 

distribution to be quantified by the mean vector and covariance matrix, and makes the distribution 

independent on spatial position but dependent only on relative positions of points [7]. Assumption of 

stationarity implies that the statistical properties of the random field remain the same when the spatial origin 

changes position. 

To simplify the application of random field theory, a transformation of the variables by decomposition is 

often performed to convert the non-stationary field to a stationary or nearly stationary field. The 

decomposition transformation technique idealizes the soil property as comprising of a deterministic trend 

component and a fluctuating or variable component expressed in form of an additive equation [2] and [8]:  

𝜓(𝑧) = 𝑡(𝑧) + 𝜉(𝑧)                     (1) 

The objective in the decomposition process is primarily to obtain an estimate and remove the deterministic 

component, t(z), while ensuring that the residual random component, ξ(z), remains stationary. Analysis of 

inherent variability involves modeling the residual component of the soil property by statistical means. The 

residual component is assumed to have a spatial structure defined by the scale of fluctuation, θ, and the 

autocovariance function, C(τ), where τ is the distance between observation points [9]. 

  The modelling of the soil parameters relies much on two essential statistical properties of the random field 

namely: autocovariance, ck, and autocorrelation coefficient, ρk, at lag k. In practice, ck and ρk are estimated 

from the samples obtained from a population. The sample autocovariance ck* and the sample 

autocorrelation coefficient, at lag k, rk are defined as follows [10]: 

 

𝑐𝑘
∗ =

1

𝑛
∑ (𝑋𝑖 − �̅�)(𝑋𝑖+𝑘 − �̅�)𝑛−𝑘

𝑖=1               (2) 

 

and  

 

𝑟𝑘 =
𝑐𝑘

∗

𝑐0
=

∑ (𝑋𝑖−�̅�)(𝑋𝑖+𝑘−�̅�)𝑛−𝑘
𝑖=1

∑ (𝑋𝑖−�̅�)2𝑛
𝑖=1

         (3) 

 

�̅� = average of the observations 𝑋1,𝑋2, … , 𝑋𝑛, 𝑎𝑛𝑑 0 ≤ 𝑘 ≤ 𝑛 

The plot or graph of ck* for lags k=0,1, 2… represents the sample autocovariance function (ACVF), while 

the plot of rk for lags k=0,1, 2…K represents the sample autocorrelation function (ACF), where K is the 

maximum number of lags for rk calculations (e.g., K=n/4). In practice, estimation of 𝜃 is done by fitting the 

theoretical correlation (Table I) to the sample autocorrelation function [2], [9], and [11]. 
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  The autocorrelation between two locations separated by horizontal and vertical distances, Δh and Δz 

respectively, in a three-dimensional zero-mean random field ξ(x,y,z), can be estimated with Equation (4), 

where ξ is the residual or detrended property field and (x,y,z) is the spatial location, with x and y being the 

horizontal coordinates and z the depth coordinate [12]. 

𝜌(Δℎ, Δ𝑧) =
𝐶𝑜𝑣[𝜉(𝑥,𝑦,𝑧),𝜉(𝑥+Δ𝑥,𝑦+Δ𝑦,𝑧+Δ𝑧)]

√𝑉𝑎𝑟[𝜉(𝑥,𝑦,𝑧)]×√𝑉𝑎𝑟[𝜉(𝑥+Δ𝑥,𝑦+Δ𝑦,𝑍+Δz)]
    (4)  

where var(.) denotes variance: cov(..) denotes covariance, Δh=(Δx2+Δy2)0.5 is the horizontal separation 

distance.  

The modelling of the spatial variability of geotechnical material requires a minimum of three parameters: 

the mean, μ; a measure of variance, σ2 (standard deviation, σ, or coefficient of variation); and the scale of 

fluctuation, θ, that associates the correlation of properties with distance [13]. Large values of θ, for a 

particular property, signifies that the property slowly fluctuates with distance about the mean, suggesting a 

more continuous deposit, while a small θ  is an indication of the property fluctuating rapidly about the 

mean, suggesting a more randomly varying material [10].  

A. Stationarity or Statistical Homogeneity 

Statistical homogeneity means that the entire joint probability density function of soil property values, at 

an arbitrary number of locations within the soil unit, remains the same even as location changes. From the 

physical perspective, statistical homogeneity or stationarity is attributed to data from uniform soil material 

that passed through similar geological processes. If the soil profiles are improperly demarcated into 

statistically homogeneous (stationary) sections, it will result in biased estimate of the variance of the soil 

data. It is therefore important to ensure that the entire soil profile within the zone of influence is divided 

into number of statistically homogeneous or stationary sections, and the data within each layer subjected 

separately to further statistical analysis [14].  

  A random field with non-stationary mean and variance can always be converted to a weakly stationary 

field by linear transformation using Equation (5) [7]. 

Table I: Some common correlation models 

Correlation Model Expression  Scale of Fluctuation 𝜽 

Simple exponential 𝜌(𝜏) = 𝑒𝑥𝑝[−|𝜏| 𝑏⁄ ]  2𝑏 

Gaussian exponential 𝜌(𝜏) = 𝑒𝑥𝑝{−𝜋[|𝜏| 𝑐⁄ ]2}  √𝜋𝑐 
Second-order autoregressive process 𝜌(𝜏) = 𝑒𝑥𝑝−|𝜏| 𝑑⁄ (1 + |𝜏| 𝑑⁄ )  4𝑑 
Cosine exponential 𝜌(𝜏) = 𝑒𝑥𝑝−|𝜏| 𝛼⁄ 𝑐𝑜𝑠(𝜏 𝛼⁄ )  𝛼 

Source: Lloret-Cabot et al. (2013) 

𝑋′(𝑡) =
𝑋(𝑡)−𝜇(𝑡)

𝜎(𝑡)
        (5) 

With transformation, the random field X’(t) will now have zero mean and unit variance everywhere in the 

field. 

B. Site Variability Assessment 

The method of site variability characterization by [6] applied knowledge of spatial statistics to quantify 

site variability indices using CPT data. The method estimated the vertical variability index (VVI) and the 

horizontal variability index (HVI).  

The VVI is comprised of three components: (!) intra-layer variability index, which calculates the vertical 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 12, Issue 9, September-2021                                                      754 
ISSN 2229-5518   

 

IJSER © 2021 

http://www.ijser.org 

variability of the soil profile based on variations in the cone tip resistance (qc) and skin friction (fs) using 

the scale of fluctuation, (2) log variability index captures the vertical  variability of the soil profile based 

on the number of soil types present, and (3) cone resistance vertical variability index that captures the 

variability as a result of the presence of extreme dissimilar soil layers in the soil profile.  

The HVI estimates horizontal variability based on the geotechnical parameter correlation across CPT 

soundings in a domain. The CPT soundings were considered in pairs and for each pair, a measure of 

difference between the trends of the parameter with depth is computed followed by the determination of 

the cross-correlation coefficient using Equation (4). A high cross-correlation value and small trend 

difference of a CPT pair is an indication of strong correlation and similarity between the two CPTs, 

suggesting low variability in the horizontal direction of the field. 

II. METHODOLOGY 

Data from a geotechnical site investigation report of a refinery project located in a mangrove swampy 

near-shore site in Niger Delta region of Nigeria was used for the study. From a total of 96 data sets available, 

20 data sets (16 CPT and 4 borehole data), were carefully selected to present equally spaced CPT grid, 

suited for random field theory application. The inferred undrained shear strength, su, from the CPT data 

were used for the analyses. 

A. Method of Data Analysis 

  The soil profile generated from the borehole log and CPT data identified five distinct soil layers. To ensure 

statistical homogeneity or stationarity within the domain, for a seamless application of the random field 

theory, the entire soil profile within the zone of influence was divided into number of statistically 

homogeneous or stationary sections, and the data within each layer subjected separately to statistical 

analysis [14].  

Data from each CPT test hole was evaluated to determine the value of geotechnical parameter at the 

different strata of the soil profile. The analyses of data from each CPT hole were performed using the 

following steps [10]: 

a) Examine the data of the parameter across the depth and transform the non-stationary data into 

stationary data. Where the data exhibited a trend, decomposition was required. The ordinary least 

square (OLS) method was used to estimate the trend.  

b) Normalize the detrended data (residual) by dividing the residuals by the corresponding standard 

deviation to produce a standard normal field (μ = 0, σ = 1) 

c) Confirm stationarity of the residuals using Kendall’s τ test.  

d) Calculate sample autocovariance and autocorrelation functions using Equations (2) and (3) 

respectively. 

e) Estimate the vertical scale of fluctuation or correlation length, θ, by fitting a theoretical model from 

Table I to the plot of sample ACF over lag distance 

f) Calculate the Bartletts distance (i.e., distance over which the samples are autocorrelated). 

Formulation of the random field model describing the variation of a soil parameter across the field was 

performed by defining two key parameters to account for the vertical and the horizontal variability of the 

soil property. The expected values of the soil parameter at mid points of the soil layer expressed as a 

function of the vertical correlation and the horizontal variability index (HVI), expressed as a function of 

distance, provided a model that described the variation of the soil parameter across the field or domain. The 

model therefore comprised of two components - vertical variability, and horizontal variability components.  
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The covariance matrix decomposition method was used to model the vertical variability while the procedure 

described in [6] was used to model the horizontal variability of the soil property.  For purpose of this study, 

only the undrained shear strength was modeled.    

III. RESULTS AND DISCUSSION 

A. Soil Profile Generation 

The CPT data was analyzed with the aid of [15]. a software, which generates soil profiles using the 

Robertson 1986, Robertson 1990 SBT and Jefferies & Been 2006 charts. Comparative examination of the 

soil behavior type in Fig 1, and the CPT data shows that some of the soil layers are mixture of “clays” and 

“sands”. The soils were classified into major soil groups using a three-step approach that allowed thin layers 

to be merged into neighboring layers [16]. 

a) SBT chart band approach – merging thin layers into adjacent layers by consideration of the secondary 

soil type(s) classification 

b) Soil group approach – merging thin layers into adjacent layers of the same soil group 

c) Average 𝑞𝑐 approach – merging thin layers into adjacent layers with similar average 𝑞𝑐 

 
Fig 1: Jefferies & Been 2006 Soil type 

 

 
Fig 2: Adjusted Soil Profile 
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The final soil profile generated, shown in Fig 2, comprised of five main soil groups. 

B. Variability Analyses of Undrained Shear Strength 

The random field modeling of vertical variability of undrained shear strength is illustrated using data 

from CP14. Trend removal was achieved in the clay units with linear regression lines. The cosine 

exponential correlation model gave a close fit to the sample ACF. The bartlett’s limits, defining the distance 

of autocorrelation, were estimated for each soil layer. Figs 3 and 4 show the fitting of the theoretical and 

sample ACFs over the lag distance while Table II presents the summary of results from the analyses. The 

correlation lengths of undrained shear strength from results of analyses of other CPT data are presented in 

Table III. The results show that the coefficient of variability (COV) of the correlation length is high at the 

upper sensitive soil layer but decreases as depth increases an indication that the value of the soil parameter 

is more predictable at greater depths 

 

Fig 3: Sample and theoretical ACF at depth 0.25-5.25m (sensitive fine) 

 

 
Fig 4: Sample and theoretical ACF at depth 16.25-37.25m (clayey silt to silty clay) 
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Table II: Summary of vertical variability analyses of su 

Depth range of stratum (m) Value of Parameter (m) Bartlett’s distance(m) Scale of Fluctuation,𝜽 

(m) 

0.25-5.25 α=0.300 ±0.428 0.191 

6.25-12.25 α=0.400 ±0.392 0.388 

17.00-37.25 α=0.800 ±0.216 0.875 

 

Table III: Vertical scale of fluctuation, θv, of su 

Sensitive fines 0.25 - 5.25m   

Clay  6.25 – 12.25m 16.5 – 37.5m 

Variable 𝜃𝑉  (𝑚) 𝜃𝑉  (𝑚) 𝜃𝑉  (𝑚) 

CP1 0.320 0.782 0.871 

CP2 0.278 0.690 0.631 

CP3 0.465 0.585 0.678 

CP4 0.348 0.356 0.503 

CP5 0.386 0.638 0.671 

CP6 0.320 0.650 0.652 

CP7 0.405 0.420 0.517 

CP8 0.482 0.316 0.518 

CP9 0.434 0.628 0.613 

CP10 0.238 0.706 0.601 

CP11 0.682 0.601 0.830 

CP12 0.204 0.354 0.667 

CP13 0.328 0.468 0.768 

CP14 0.191 0.388 0.875 

CP15 0.510 0.875 0.500 

CP16 0.805 0.708 0.773 

Mean (m) 0.400 0.573 0.667 

Std Dev (m) 0.166 0.169 0.127 

COV (%) 41.45 29.54 19.02 

 

The horizontal variability indices were determined over a limiting distance of 12m and the average HVI 

for the clay units at different depths are presented in Table IV. 

Table IV: Horizontal Variability Indices of clay soil units 

Average depth range (m) Average HVI values 

0.25 – 5.25 0.572 

6.25 – 12.25 0.655 

16.5 – 37.5 0.509 
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C. Random Field Model of the Undrained Shear Strength 

Using the covariance matrix decomposition method with the 4x4 matrices of vertical correlation structure 

of the soil layers, a random field estimation of the values of the undrained shear strength were obtained. A 

power function trendline of the variation of the undrained shear strength across the domain provided the 

regression coefficients of the vertical variability model. Table V shows the random field estimates of the 

undrained shear strength, while the vertical variability models are presented in Table VI for the different 

layers of clay. 

The horizontal variability indices were determined over a limiting distance of 12m and the power function 

trendline of the plot of the indices over the distance provided the regression coefficients of the horizontal 

variability model. Table VII presents the horizontal variability model for the site.  

Table V: Estimated undrained shear strength su:  

Sensitive fines 0.25 - 5.25m   

Clay  6.25 – 12.25m 16.5 – 37.5m 

Variable 𝑠𝑢 (𝑘𝑃𝑎) 𝑠𝑢 (𝑘𝑃𝑎) 𝑠𝑢 (𝑘𝑃𝑎) 

CP1 28.89 29.69 73.84 

CP2 16.43 46.73 61.87 

CP3 28.19 30.30 92.30 

CP4 16.99 37.31 84.87 

CP5 19.57 49.89 69.43 

CP6 15.89 31.16 63.13 

CP7 29.75 28.38 71.68 

CP8 18.00 39.26 81.84 

CP9 16.84 44.84 63.82 

CP10 16.01 33.69 69.19 

CP11 25.33 33.16 75.64 

CP12 13.96 47.66 79.00 

CP13 13.57 38.96 63.82 

CP14 15.98 38.59 64.17 

CP15 20.48 26.43 63.74 

CP16 16.81 30.44 69.36 

Mean (m) 19.54 36.66 71.73 

Std Dev (m) 5.41 7.45 8.96 

COV (%) 27.7 20.3 12.5 

 

Table VI: Vertical Variability model of su 

Average depth range (m) Vertical variability 𝒔𝒖𝒗, component Typical α value 

0.25 – 5.25 𝑠𝑢𝑣 = 15.2𝛼−0.15 0.400 

6.25 – 12.25 𝑠𝑢𝑣 = 31.2𝛼−0.004 0.573 

16.5 – 37.5 𝑠𝑢𝑣 = 64.8𝛼−0.039 0.667 
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Table VII: Horizontal Variability model of su 

Average depth range (m) Horizontal variability 𝒔𝒖𝒉, component Typical Vh values 

0.25 – 5.25 𝑠𝑢ℎ = 𝑉ℎ . ℎ−0.30 0.572 

6.25 – 12.25 𝑠𝑢ℎ = 𝑉ℎ . ℎ−0.20 0.655 

16.5 – 37.5 𝑠𝑢ℎ = 𝑉ℎ . ℎ−0.33 0.509 

 

The random field model for the undrained shear strength of the soil is derived by combining the two 

variability components. 

 

𝑠𝑢(𝑎𝑣𝑔) = 𝑠𝑢𝑣 + 𝑠𝑢ℎ           (6) 

 

The random field model of the undrained shear strength at any depth across the field is generally expressed 

as  
 

𝒔𝒖𝒊(𝒂𝒗𝒈)
= 𝒎𝜶𝒊

𝜷𝒊 + 𝑽𝒉𝒊𝒉
𝜹𝒊       (7) 

 

𝑚 is the mathematical expected value of the undrained shear strength at depth z, 𝛼 is a variable linked to 

the vertical variability of the soil property (mean correlation length), β is regression coefficients obtained 

by fitting a power trendline on the plot of the mid depth undrained shear strength against the CP test holes 

at different depths of occurrence of the soil layer;  𝑉ℎ𝑖 is a variable linked to the horizontal variability of 

the soil parameter across the domain (average horizontal variability index of the soil layer); ℎ is the distance 

at which the 𝑠𝑢 is being measured and 𝛿 is the coefficient of the power fit of the trendline of plot of HVI 

over a maximum distance of 12m. 

For the field studied the typical values of the coefficients in the random field model of the undrained 

shear strength at the different depths of occurrence of clay soil are presented in Table VIII  

Table VIII: Coefficients for su spatial variability model 

Average depth range (m) 𝒎 𝜶𝒊 𝜷𝒊 𝑽𝒉𝒊 𝜹𝒊 

0.25 – 5.25 15 0.40 -0.150 0.572 -0.30 

6.25 – 12.25 31 0.57 -0.004 0.655 -0.20 

16.5 – 37.5 65 0.67 -0.039 0.509 -0.33 

 

The model was validated by comparing the predicted values with the field data. The model predicted the 

undrained shear strength values with error margin of ±15%. Fig 8 compares the field measured and model 

predicted undrained shear strength. 
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Fig 8: Comparison of Field measured and model predicted su 

CONCLUSIONS 

Given the correlation length and the expected value of the undrained shear strength of the clay soil units, it 

is possible to estimate the undrained shear strength of the field using the random field model (Equation (7). 

Correlation lengths can be assumed with confidence for preliminary designs based on the analysis of data 

from the database. 

REFERENCES 

[1] Onyejekwe, S., (2012). “Characterization of soil variability for reliability-based design” Doctoral 

Dissertation. 2142. https://scholarsmine.mst.edu/doctoral_dissertations/2142   

[2] Uzielli, M., Lacasse, S., Nadim, F., and Phoon, K.K. (2006), “Soil variability analysis for 

geotechnical practice” Proc. of the 2nd International Workshop on Characterization and Engineering 

Properties of Natural Soils, Singapore, 3: 1653-1752  

https://www.researchgate.net/publication/266136333  

[3] Lumb, P. (1974). “Application of Statistics in Soil Mechanics” in Soil Mechanics – New Horizons, 

Chapter 3, Lee, I. K. (ed.), American Elsevier, New York, pp. 44-111. 

[4] Vanmarcke. E.H. (1977). Probabilistic modeling of soil profiles. Journal of the Geotechnical 

Engineering Division. ASCE. l03(GTll): 1227-1245.  

[5] Matheron, G. (1963). Principles of Geostatistics, Economic Geology, Vol. 58, pp. 1246-1266. 

[6] Salgado, R., Ganju, E., and Prezzi, M. (2019). Site variability analysis using cone penetration test 

data, Journal of Computers and Geotechnics 105, 37-50. 

http://dx.doi.org/10.1016/j.compgeo.2018.08.001.  

[7] Fenton, G., and Griffiths, D.V., (2008). Risk Assessment in Geotechnical Engineering, John Wiley & 

sons, New Jersey.  

[8] Baecher, G.B. & Christian, J.T. (2003). Reliability and statistics in geotechnical engineering, John 

Wiley & Sons, New York 

0

10

20

30

40

50

60

70

80

90

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9 CP10CP11CP12CP13CP14CP15CP16

U
n

d
ra

in
ed

 s
h

ea
r 

st
re

n
gt

h
 (

kP
a)

CP Test holes

Field

Model

IJSER

http://www.ijser.org/
https://scholarsmine.mst.edu/doctoral_dissertations/2142
https://www.researchgate.net/publication/266136333
http://dx.doi.org/10.1016/j.compgeo.2018.08.001


International Journal of Scientific & Engineering Research Volume 12, Issue 9, September-2021                                                      761 
ISSN 2229-5518   

 

IJSER © 2021 

http://www.ijser.org 

[9] Oguz, E. A., and Huvaj, N. (2019). Spatial probabilistic evaluation of offshore/nearshore sea bottom 

soils based on cone penetration tests, Bulletin of Engineering Geology, and the Environment, 

https://doi.org/10.1007/s10064-019-01608-w  

[10] Jaksa, M.B. (2006). “Modeling the natural variability of an over-consolidated clay in Adelaide, 

South Australia”. in T.S. Tan, K.K. Phoon, D.W. Hight & S. Leroueil (eds.), Proceedings of the 2nd 

International Workshop on Characterization and Engineering Properties of Natural Soils. Singapore, 

November 29 – December 1, 2006. The Netherlands: Taylor & Francis. 

[11] Zhu, H and Zhang, I.M., (2013) “Characterizing geotechnical anisotropic spatial variations using 

random field theory”, Canadian Geotech. J. 50: 723-734, https://dx.doi.org/10.1139/cgj-2012-0345    

[12] Ching, J., Wu T., Stuedlein, A. W., and Bong, T., (2017) Estimating horizontal scale of fluctuation 

with limited CPT soundings, Geoscience Frontiers, 1-12. https://doi.org/10.1016/j.gsf.2017.11.008  

[13] Vanmarcke, E.H., (1983). Random fields: analysis and synthesis. MIT Press, Cambridge, Mass. 

[14] Phoon, K. K., Quek, S. T., An, P., (2003). Identification of statistically homogeneous soil layers 

using modified Bartlett statistics. ASCE Journal of Geotechnical and Geoenvironmental Engineering 

129(7), 649-659 https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(649) 

 

 

 

 

 

IJSER

http://www.ijser.org/
https://doi.org/10.1007/s10064-019-01608-w
https://dx.doi.org/10.1139/cgj-2012-0345
https://doi.org/10.1016/j.gsf.2017.11.008
https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(649)



